Движение брона. Броуновское движение (движение молекул)

При наблюдении в микроскопе взвеси цветочной пыльцы в воде Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды, его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.

Первая количественная теория броуновского движения была дана А. Эйнштейном и М. Смолуховским в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 10 14 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро .

При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.

Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.

Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Тепловое движение

Любое вещество состоит из мельчайших частиц - молекул. Молекула - это наименьшая частица данного вещества, сохраняющая все его химические свойства. Молекулы расположены в пространстве дискретно, т. е. на некоторых расстояниях друг от друга, и находятся в состоянии непрерывного беспорядочного (хаотичного) движения .

Поскольку тела состоят из большого числа молекул и движение молекул беспорядочно, то нельзя точно сказать, сколько ударов будет испытывать та или иная молекула со стороны других. Поэтому говорят, что положение молекулы, её скорость в каждый момент времени случайны. Однако это не означает, что движение молекул не подчиняется определённым законам. В частности, хотя скорости молекул в некоторый момент времени различны, у большинства из них значения скорости близки к некоторому определённому значению. Обычно, говоря о скорости движения молекул, имеют в виду среднюю скорость (v$cp ).

Нельзя выделить какое-то определённое направление, в котором движутся все молекулы. Движение молекул никогда не прекращается. Можно сказать, что оно непрерывно. Такое непрерывное хаотическое движение атомов и молекул называют — . Такое название определяется тем, что скорость движения молекул зависит от температуры тела. Чем больше средняя скорость движения молекул тела, тем выше его температура. И наоборот, чем выше температура тела, тем больше средняя скорость движения молекул.

Движение молекул жидкости было обнаружено при наблюдении броуновского движения - движения взвешенных в ней очень мелких частиц твердого вещества. Каждая частица беспрерывно совершает скачкообразные перемещения в произвольных направлениях, описывая траектории в виде ломаной линии. Такое поведение частиц можно объяснить, считая, что они испытывают удары молекул жидкости одновременно с разных сторон. Различие в числе этих ударов с противоположных направлений приводит к движению частицы, поскольку ее масса соизмерима с массами самих молекул. Движение таких частиц впервые обнаружил в 1827 г. английский ботаник Броун, наблюдая под микроскопом частицы цветочной пыльцы в воде, почему оно и было названо — броуновское движение .

Что такое Броуновское движение

Это движение характеризуется следующими чертами:

  • продолжается неограниченно долго без каких бы то ни было видимых изменений,
  • интенсивность движения броуновских частиц зависит от их размеров, но не зависит от их природы,
  • интенсивность возрастает с ростом температуры,
  • интенсивность возрастает с уменьшением вязкости жидкости или газа.

Броуновское движение не является молекулярным движением, но служит непосредственным доказательством существования молекул и хаотического характера их теплового движения.

Сущность Броуновского движения

Сущность этого движения в следующем. Частица вместе с молекулами жидкости или газа образуют одну статистическую систему. В соответствии с теоремой о равномерном распределении энергии по степени свободы на каждую степень свободы приходится 1/2kT энергии. Энергия 2/3kT, приходящаяся на три поступательные степени свободы частицы, приводит к движению ее центра масс, которое наблюдается под микроскопом в виде дрожания частицы. Если броуновская частица достаточно жесткая, то еще 3/2kT энергии приходится на ее вращательные степени свободы. Поэтому при своем дрожании она испытывает еще и постоянные изменения ориентировки в пространстве.

Можно объяснить броуновское движение и так: причиной Броуновского движения являются флуктуации давления, которое оказывается на поверхность малой частицы со стороны молекул среды. Сила и давление изменяется по модулю и направлению, в результате чего частица находится в беспорядочном движении.

Движение броуновской частицы является случайным процессом. Вероятность (dw) того, что броуновская частица, находившаяся в однородной изотропной среде в начальный момент времени (t=0) в начале координат, сместится вдоль произвольно направленной (при t$>$0) оси Ox так, что ее координата будет лежать в интервале от x до x+dx, равна:

где $\triangle x$- малое изменение координаты частицы, вследствие флуктуации.

Рассмотрим положение Броуновской частицы через некоторые фиксированные промежутки времени. Начало координат поместим в точку, в которой частица находилась при t=0. Обозначим $\overrightarrow{q_i}$ -- вектор , который характеризует перемещение частицы между (i-1) и i наблюдениями. По истечении n наблюдений частица сместится из нулевого положения в точку с радиус-вектором $\overrightarrow{r_n}$. При этом:

\[\overrightarrow{r_n}=\sum\limits^n_{i=1}{\overrightarrow{q_i}}\left(2\right).\]

Перемещения частицы происходит по сложной ломаной линии все время наблюдений.

Найдем средний квадрат удаления частицы от начала после n шагов в большой серии опытов:

\[\left\langle r^2_n\right\rangle =\left\langle \sum\limits^n_{i,j=1}{q_iq_j}\right\rangle =\sum\limits^n_{i=1}{\left\langle {q_i}^2\right\rangle }+\sum\limits^n_{i\ne j}{\left\langle q_iq_j\right\rangle }\left(3\right)\]

где $\left\langle q^2_i\right\rangle $- средний квадрат смещения частицы на i- м шаге в серии опытов (он для всех шагов одинаков и равен какой-то положительной величине a2), $\left\langle q_iq_j\right\rangle $- является средней величиной скалярного произведения при i-м шаге на перемещение при j-м шаге в различных опытах. Эти величины независимы друг от друга, одинаково часто встречаются как положительные значения скалярного произведения, так и отрицательные. Поэтому, считаем, что $\left\langle q_iq_j\right\rangle $=0 при$\ i\ne j$. Тогда имеем из (3):

\[\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle \left(4\right),\]

где $\triangle t$- промежуток времени между наблюдениями; t=$\triangle tn$ - время, в течение которого средний квадрат удаления частицы стал равен $\left\langle r^2\right\rangle .$ Получаем, что частица удаляется от начала. Существенно то, что средний квадрат удаления растет пропорционально первой степени времени. $\alpha \ $- можно найти экспериментально, а можно теоретически, как будет показано в примере 1.

Броуновская частица движется не только поступательно, но и вращаясь. Среднее значение угла поворота $\triangle \varphi $ броуновской частицы за время t равно:

\[{\triangle \varphi }^2=2D_{vr}t(5),\]

где $D_{vr}$ -- коэффициент вращательной диффузии. Для сферической броуновской частицы радиуса - а $D_{vr}\ $ равен:

где $\eta $ - коэффициент вязкости среды.

Броуновское движение ограничивает точность измерительных приборов. Предел точности зеркального гальванометра определяется дрожание зеркальца, подобно броуновской частице, которая подвергается ударам молекул воздуха. Случайное движение электронов вызывает шумы в электрических сетях.

Пример 1

Задание: Для того, чтобы математически полно охарактеризовать броуновское движение, надо найти $\alpha $ в формуле $\left\langle r^2_n\right\rangle =\alpha t$. Считать коэффициент вязкости жидкости известным и равным b, температура жидкости T.

Запишем уравнение движения броуновской частицы в проекции на ось Ox:

где m -- масса частицы, $F_x$ -- случайная сила, действующая на частицу, $b\dot{x}$- член уравнения, характеризующий силу трения, действующая на частицу в жидкости.

Аналогичный вид имеют уравнения для величин, относящиеся к другим координатным осям.

Умножим обе части уравнения (1.1) на x, а члены $\ddot{x}x\ и\ \dot{x}x$ преобразуем:

\[\ddot{x}x=\ddot{\left(\frac{x^2}{2}\right)}-(\dot{x})^2,\dot{x}x=(\frac{x^2}{2}\)(1.2)\]

Тогда уравнение (1.1) приведем к виду:

\[\frac{m}{2}(\ddot{x^2})-m(\dot{x})^2=-\frac{b}{2}\left(\dot{x^2}\right)+F_xx\ (1.3)\]

Усредним обе части этого уравнения по ансамблю броуновских частиц, учитывая при этом, что средняя от производной по времени равна производной от средней величины, так как это усреднение по ансамблю частиц, и, значит, переставим операцией дифференцирования по времени. В результате усреднения (1.3) получаем:

\[\frac{m}{2}\left(\left\langle \ddot{x^2}\right\rangle \right)-\left\langle m(\dot{x})^2\right\rangle =-\frac{b}{2}\left(\dot{\left\langle x^2\right\rangle }\right)+\left\langle F_xx\right\rangle \ \left(1.4\right).\]

Так как отклонения броуновской частицы в любом направлении равновероятны, то:

\[\left\langle x^2\right\rangle =\left\langle y^2\right\rangle =\left\langle z^2\right\rangle =\frac{\left\langle r^2\right\rangle }{3}\left(1.5\right)\]

Используем $\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle $, получаем $\left\langle x^2\right\rangle =\frac{\alpha t}{3}$, следовательно: $\dot{\left\langle x^2\right\rangle }=\frac{\alpha }{3}$, $\left\langle \ddot{x^2}\right\rangle =0$

Из-за случайного характера силы $F_x$ и координаты частицы x и их независимости друг от друга должно выполняться равенство $\left\langle F_xx\right\rangle =0$, тогда (1.5) сводится к равенству:

\[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =\frac{\alpha b}{6}\left(1.6\right).\]

По теореме о равномерном распределении энергии по степеням свободы:

\[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =kT\left(1.7\right).\] \[\frac{\alpha b}{6}=kT\to \alpha =\frac{6kT}{b}.\]

Таким образом, получим формулу для решения задачи о Броуновском движении:

\[\left\langle r^2\right\rangle =\frac{6kT}{b}t\]

Ответ: Формула $\left\langle r^2\right\rangle =\frac{6kT}{b}t$ решает задачу о броуновском движении взвешенных частиц.

Пример 2

Задание: Частицы гуммигута сферической формы радиуса r участвуют в броуновском движении в газе. Плотность гуммигута $\rho $. Найти среднеквадратичную скорость частиц гуммигута при температуре T.

Среднеквадратичная скорость молекул равна:

\[\left\langle v^2\right\rangle =\sqrt{\frac{3kT}{m_0}}\left(2.1\right)\]

Броуновская частица находится в равновесии с веществом, в котором она находится, и мы можем рассчитать ее среднеквадратичную скорость, используя формулу для скорости молекул газа, которые, в свою очередь, двигаясь, заставляют перемещаться броуновскую частицу. Для начала найдем массу частицы:

\[\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}\]

Ответ: Скорость частицы гуммигута взвешенного в газе можно найти как $\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}$.

В VI классе вы познакомились с диффузией – перемешиванием газов, жидкостей и твердых тел при непосредственном контакте. Это явление можно объяснить беспорядочным движением молекул. Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие взвешенные в воде частицы какого-либо твердого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Броуновское движение – это тепловое движение взвешенных в жидкости (или газе) частиц.

Наблюдение броуновского движения. Английский ботаник Броун впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна. Сейчас обычно используют частички краски гуммигут, нерастворимой в воде. Эти частички совершают хаотическое движение. Самым поразительным и непривычным является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броуновское движение – тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растет. На рисунке 6 приведена схема движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени – 30 с. Эти точки соединены прямыми линиями. В действительности траектории частиц гораздо сложнее.

Броуновское движение можно наблюдать в газе. Его совершают взвешенные в воздухе частицы пыли или дыма.

В настоящее время понятие «броуновское движение» используется в более широком смысле. Так, например, броуновским движением является дрожание стрелок чувствительных измерительных приборов. Оно происходит из-за теплового движения атомов деталей приборов и окружающей среды.

Объяснение броуновского движения. Объяснение броуновского движения может быть дано только на основе молекулярно-кинетической теории. Причина броуновского движения частицы в том, что удары молекул в нее не компенсируют друг друга. На рисунке 7 схематически показано положение одной броуновской частицы и ближайших к ней молекул. При хаотическом движении молекул импульсы, передаваемые ими броуновской частице, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления, которая и вызывает изменение движения броуновской частицы.

Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от среднего. Чем меньше площадь тела, тем значительнее относительные изменения силы давления, действующей на данную площадь. Так, если площадка имеет размеры порядка нескольких диаметров молекулы, то действующая на нее сила меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.

Молекулярно-кинетическая теория броуновского движения была создана А. Эйнштейном в 1905 г. Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж Перреном окончательно завершили победу молекулярно-кинетической теории.

Броуновское движение бро́уновское движе́ние

(брауновское движение), беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды; открыто Р. Броуном.

БРОУНОВСКОЕ ДВИЖЕНИЕ

БРО́УНОВСКОЕ ДВИЖЕ́НИЕ (брауновское движение), беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды; открыто Р. Броуном (см. БРОУН Роберт (ботаник)) в 1827 г.
При наблюдении в микроскопе взвеси цветочной пыльцы в воде Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды, его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.
Первая количественная теория броуновского движения была дана А. Эйнштейном (см. ЭЙНШТЕЙН Альберт) и М. Смолуховским (см. СМОЛУХОВСКИЙ Мариан) в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 10 14 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро (см. АВОГАДРО ПОСТОЯННАЯ) .
Выводы теории броуновского движения были подтверждены измерениями Ж. Перрена (см. ПЕРРЕН Жан Батист) и Т. Сведберга (см. СВЕДБЕРГ Теодор) в 1906 г. На основе этих соотношений были экспериментально определены постоянная Больцмана (см. БОЛЬЦМАНА ПОСТОЯННАЯ) и постоянная Авогадро.
При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.
Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.
Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.


Энциклопедический словарь . 2009 .

Смотреть что такое "броуновское движение" в других словарях:

    - (брауновское движение), беспорядочное движение малых ч ц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Исследовано в 1827 англ. учёным Р. Броуном (Браун; R. Brown), к рый наблюдал в микроскоп… … Физическая энциклопедия

    БРОУНОВСКОЕ ДВИЖЕНИЕ - (Brown), движение мельчайших частиц, взвешенных в жидкости, происходящее под действием столкновений между этими частицами и молекулами жидкости. Впервые оно было замечено под микроскопом англ. ботаником Броу ном в 1827 г. Если в поле зрения… … Большая медицинская энциклопедия

    - (брауновское движение) беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды; открыто Р. Броуном … Большой Энциклопедический словарь

    БРОУНОВСКОЕ ДВИЖЕНИЕ, неупорядоченное, зигзагообразное движение частиц, взвешенных в потоке (жидкости или газа). Вызывается неравномерностью бомбардировки более крупных частиц с разных сторон более мелкими молекулами движущегося потока. Это… … Научно-технический энциклопедический словарь

    броуновское движение - – колебательное, вращательное или поступательное движение частиц дисперсной фазы под действием теплового движения молекул дисперсионной среды. Общая химия: учебник / А. В. Жолнин … Химические термины

    БРОУНОВСКОЕ ДВИЖЕНИЕ - бес порядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды, находящихся в тепловом движении; играет важную роль в некоторых физ. хим. процессах, ограничивает точность… … Большая политехническая энциклопедия

    броуновское движение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Brownian motion … Справочник технического переводчика

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

    Непрерывное хаотичное движение микроскопических частиц, взвешенных в газе или жидкости, обусловленное тепловым движением молекул окружающей среды. Это явление впервые было описано в 1827 шотландским ботаником Р.Броуном, исследовавшим под… … Энциклопедия Кольера

    Правильнее брауновское движение, беспорядочное движение малых (размерами в нескольких мкм и менее) частиц, взвешенных в жидкости или газе, происходящее под действием толчков со стороны молекул окружающей среды. Открыто Р. Броуном в 1827.… … Большая советская энциклопедия

Книги

  • Броуновское движение вибратора , Ю.А. Крутков , Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`Известия академии наук СССР`). В… Категория: Математика Издатель: