Техническое описание - диафрагмы для измерения расхода. ООО «СиБ Контролс Диафрагма на трубопроводе назначение

Диафрагма (измерение расхода)

Схема установленной диафрагмы в кольцевой камере (которая в свою очередь вставлена в трубу). Принятые обозначения: 1. Диафрагма; 2. Кольцевая камера; 3. Прокладка; 4. Труба. Стрелки показывают направление жидкости/газа. Оттенками цвета выделено изменение давления.

где
= объёмный расход (at any cross-section), м³/с
= массовый расход (at any cross-section), кг/с
= коэффициент истечения, безразмерная величина
= коэффициент расхода, безразмерная величина
= площадь сечения трубы, м²
= площадь
= диаметр трубы, м
= диаметр отверстия в диафрагме, м
= соотношение диаметров трубы и отверстия в диафрагме, безразмерная величина
= скорость жидкости до диафрагмы, м/с
= скорость жидкости внутри диафрагмы, м/с
= давление жидкости до диафрагмы, Па (кг/(м·с²))
= давление жидкости после диафрагмы, Па (кг/(м·с²))
= плотность жидкости, кг/м³.

Течение газа через диафрагму

В основном, уравнение (2) применимо только для несжимаемых жидкостей. Но оно может быть модифицировано введением коэффициента расширения с целью учёта сжимаемости газов.

Равен 1.0 для несжимаемых жидкостей и может быть вычислен для газов.

Расчёт коэффициента расширения

Коэффициент расширения , который позволяет отследить изменение плотности идеального газа при изоэнтропийном процессе , может быть найден как:

Для значений менее чем 0.25, стремится к 0, что приводит к обращению последнего члена в 1. Таким образом, для большинства диафрагм справедливо выражение:

где
= коэффициент расширения, безразмерная величина
=
= отношение теплоёмкостей (), безразмерная величина.

Подставив уравнение (4) в выражение для массового расхода (3) получим:

Таким образом, конечное выражение для несжатого (т.е., дозвукового) потока идеального газа через диафрагму для значений β меньших, чем 0.25:

Помня что и (уравнение состояния реального газа с учётом фактора сжимаемости)

где
= отношение теплоёмкостей (), безразмерная величина
= массовый расход в произвольном сечении, кг/с
= расход реального газа до диафрагмы, м³/с
= расходный коэффициент диафрагмы, безразмерная величина
= площадь сечения отверстия в диафрагме, м²
=

Текущая версия страницы пока не проверялась

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 5 ноября 2014; проверки требуют.

Схема установленной диафрагмы в кольцевой камере (которая, в свою очередь, вставлена в трубу). Принятые обозначения: 1. Диафрагма; 2. Кольцевая камера; 3. Прокладка; 4. Труба. Стрелки показывают направление жидкости/газа. Оттенками цвета выделено изменение давления.

Диафрагма выполняется в виде кольца. Отверстие в центре с выходной стороны в некоторых случаях может быть скошено. В зависимости от конструкции и конкретного случая диафрагма может вставляться в кольцевую камеру или нет (см. Виды диафрагм). Материалом изготовления диафрагм чаще всего является сталь 12Х18Н10Т (ГОСТ 5632-72), в качестве материала для изготовления корпусов кольцевых камер может использоваться сталь 20 (ГОСТ 1050-88) или сталь 12Х18Н10Т (ГОСТ 5632-2014).

Предполагая течение жидкости, несжимаемой и невязкой, установившимся, ламинарным, в горизонтальной трубе (изменения уровня отсутствуют) с пренебрежимо маленькими потерями на трение, закон Бернулли сокращается до закона сохранения энергии между двумя точками на одной линии тока:

Умножим полученное нами ранее уравнение (1) на плотность жидкости, чтобы получить выражение для массового расхода в любом сечении трубы:

Таким образом, конечное выражение для несжатого (т.е., дозвукового) потока идеального газа через диафрагму для значений β меньших, чем 0.25:

Принцип работы

Диафрагма создает динамический напор. Через вертикальный столб вещества в трубопроводах перепада давления он передается на измерительную ячейку измерительного преобразователя дифф. давления. Измерительный преобразователь преобразует сигнал давления с корневой характеристикой в пропорциональный расходу ток или цифровой сигнал, например, Profibus.

Конструкции дроссельных приборов

Формы отверстия дросселя

Дроссельные приборы изготовляются по DIN EN ISO 5167. Поэтому сфера применения нормированного отверстия дросселя форма A ограничена числом Рейнольдса. Границы зависят от соотношения диаметра β = d/D. (D: внутренний диаметр трубы).

Для чисел Рейнольдса в диапазоне от приблизительно 103 до 105 можно измерять с отверстием дросселя форма B (четверть круга) при несколько более высокой погрешности. Радиус профиля r зависит от соотношения диаметра β и получается из расчета диаметра отверстия дросселя d.

Цилиндрическое отверстие дросселя форма D используется для измерения в обеих направлениях течения.

Заборные штуцеры

Тип резьбовых и сварных соединений в зависимости от измеряемого вещества и ном. давления запорной арматуры

Тип соединений штуцера зависит от измеряемого вещества и ном. давления запорной арматуры; длина штуцера зависит от диаметра (диаметр трубы) дроссельного прибора и рабочей температуры (из-за теплоизоляции!); положение штуцера зависит от измеряемого вещества и направления протока.

Резьбовые соединения заборных штуцеров, размеры в мм

Сварные соединения заборных штуцеров, размеры в мм

Положение заборных штуцеров

При измерении жидкостей и газов расположение заборных штуцеров может быть любым; при измерении пара уравновешивающие резервуара должны находится на той же высоте.

  • горизонтальные паропроводы

Горизонтальная линий от стены с дроссельным прибром и комбинацией вентилей; у диафрагмы с кольцевой камерой или цельной диафрагмы специальной монтажной длины 65мм.

У горизонтальных паропроводов прямые штуцеры располагаются друг против друга или, если трубопроводо проходит близко к стене, выгнутые штуцеры на одной стороне.

  • вертикальные паропроводы

Вертикальная линия пара с дроссельным прибором и комбинацией вентилей

У вертикальных или сгибающихся линий паропроводов нижний штуцер изогнут вверх, так что и здесь соединительные фланцы и уравновешивающие резервуары находятся на одной высоте.

Проводка трубопровода и направление расхода

Положение заборных штуцеров

Использование

горизонтально

с уравновешивающими резервуарами

вертикально

горизонтально

без уравновешивающих резервуаров

горизонтально, вертикально

вертикально


1) Не возможно у диафрагм с отдельными отверстиями (монтажная длина 40 мм). Возможна спец. монтажная длина 65 мм.

²) Возможно только у диафрагм с кольцевыми камерами (монтажная длина 65 мм.) с загнутыми заборными штуцерами.

³) Угол γ зависит от номинального давления и диаметра согласно DIN 19 205.

Принцип метода измерения перепада давления

Принцип метода измерения перепада давления: распределение давления в сужении линии

Для измерения расхода в месте измерения устанавливается дроссельный прибор, который сужает и имеет два соединения для забора перепада давления. Если свойства дроссельного прибора и измеряемого вещества известны, так что приведенное ниже уравнение может быть расчитано, то перепад давления является мерой для абсолютного расхода. Нет необходимости проводитьсравнительное измерение; измерение расхода может быть проверено независимо производителем прибора.

Метод измерения перепада давления основывается на законе неразрывности и уравнении Бернулли.

По закону неразрывности расход текучего вещества в трубопроводе во всех местах одинаков. Сужение поперечного сечения в одном месте вызывает увеличение скорости расхода в данном месте. Согласно уравнению Бернулли внутренняя энергия текущего вещества является постоянной, она складывается из суммы статической (давление) и кинетической (движение) энергии. Поэтому увеличение скорости вызывает уменьшение статического давления (см. рис. “Принцип метода измерения перепада давления: распределение давления в сужении линии”). Эта разница давлений, так называемый перепад давления, является мерой для расхода.

Общее соотношение: q = c√Δp

  • q: расход (q m , q v) maссовый или объёмный расход
  • Δp: перепад давления
  • c:коэффициент, зависящий от размера трубопровода.

Это уравнение доказывает, что возникающиее из-за сужения перепад давления пропорционален квадрату расхода (см. рисунок „Связь между расходом q и перепадом давления Δp“).


Связь между расходом q и перепадом давления Δp

Диафрагмы для измерения расхода - это простые приспособления, которые устанавливаются в трубопроводах для сужения потока жидкости, газа и пара. Это плоский, круглый диск с проходным сечением или отверстием. Диафрагмы обычно классифицируются в зависимости от формы проходного отверстия и/или его расположения на диске.


Применение диафрагмы

Размер, форма и расположение отверстия диафрагмы - это конструктивное решение, зависящее от того, для каких установок предназначена эта диафрагма. Например, эксцентрическую диафрагму можно было бы использовать для влагонасыщенных газов, это бы позволило конденсирующейся в нижней части трубопровода жидкости пройти через отверстие. Сегментную диафрагму, с проходным отверстием в виде части окружности, расположенным в верхней части, установленной в горизонтальном положении трубы, можно было бы использовать для жидкостей с большим насыщением газами, которые могут подниматься и скапливаться в верхней части трубопровода. В любом из случаев целью этих конструктивных решений является предотвращение скопления какого-либо вещества выше по потоку относительно диафрагмы. Это будет изменять расход жидкости, газа или пара и приводить к неточностям во время измерений.


Это пример трубопровода с концентрической диафрагмой, установленной между двумя фланцами. Фланец - это венец вокруг трубы, с помощью которого осуществляет болтовое соединение двух секций труб. Перепад давления, созданный в результате установки диафрагмы, измеряется с помощью расположенных по обе стороны диафрагмы отборов. Отбор - это отверстие в трубе с вмонтированной в него трубкой.


Маркировка диафрагм

Обычно на диафрагмах стоит маркировка с указанием информации по поводу размера проходного отверстия. Как правило, эта информация отштампована на хвостовике диафрагмы. Кроме размера проходного отверстия, там может быть и другая информация, такая как: название завода-изготовителя и код материала, из которого изготовлена диафрагма, соответствующий размер трубы, для установки в которую сконструирована данная диафрагма. Эта информация предельно важна для киповца, которому приходится заниматься заменой диафрагм при повреждении или по причине того, что она сработалась. На хвостовике новой диафрагмы, которую устанавливают, должна быть такая же маркировка с информацией идентичной информации заменяемой старой диафрагмы.

По причине того, что диафрагмы могут быть специальной конструкции для правильной бесперебойной эксплуатации, необходимо соответствующее проекту размещение проходного отверстия. Многие производители при маркировке всех своих диафрагм добавляют слова «Up» (вверх) или «Inlet» (входная). В противном случае, при отсутствии данных слов в маркировке, общее правило монтажа всех диафрагм такого: устанавливать диафрагму нужно таким образом, чтобы сторона с маркировкой была входной для проходящего через диафрагму потока. Ориентация при установке диафрагм без маркировки определяется в зависимости от типа ребер проходного отверстия.


На рисунке выше в качестве примера изображены две диафрагмы со следующими типами ребер проходного отверстия: ребро диафрагмы со скосом и с углубленной фаской, нарезанной по краю ребра. В обоих случаях ребро проходного отверстия с другой стороны диафрагмы обычное прямоугольное, без скоса или фаски.

В обоих случаях, как при установке диафрагм с маркировкой, так и при установке диафрагм без маркировки, следует устанавливать диафрагму так, чтобы поток входил в диафрагму со стороны обычного прямоугольного ребра проходного отверстия. Скошенное или с нарезной фаской ребро проходного отверстия должно находится со стороны ниже по потоку относительно диафрагмы.

Замена диафрагмы

По мере сработанности обычное прямоугольное ребро у диафрагмы становиться округлым и приходит необходимость замены её на новую. При замене диафрагмы по причине того, что она сработалась, должны быть учтены два основных фактора: новая диафрагма должна быть идентична сработанной, и установка диафрагмы должна быть выполнена в соответствии с правильной ориентацией сторон диафрагмы.

Мерные диафрагмы можно считать основным общепромышленным средством измерения расхода жидкости, газа и пара. Такое широкое распространение сужающих устройств обусловлено целым рядом их достоинств, среди которых важнейшими являются универсальность применения, возможность измерения в широких пределах. Простота изготовления, а также отсутствие необходимости в образцовых расходомерных установках для градуировки и поверки в случае применения нормализованных сужающих устройств. Это позволяет определить расход по перепаду на диафрагме расчетным путем, причем погрешность такого метода может быть достаточно точно оценена.

        Зависимость между расходом и перепадом давления на мерной диафрагме

Движение потока жидкости через диафрагму схематически изображено на рис. 6.1. Сужение струи начинается в сечении А-А перед диафрагмой, в сечении В-В сжатие струи максимально. В сечении С-С струя расширяется до первоначального размера, заполняя полностью сечение трубы. Возрастание средней скорости от значения до значения в сечении В-В, а следовательно, и кинетической энергии происходит за счет уменьшения давления до давленияв горле (наименьшем сечении) струи.

В сечении С-С давление больше, чем в сечении В-В, но не достигает значения в сечении А-А, вследствие потерь энергии на диафрагме.

Запишем уравнение Бернулли для сечений А-А и В-В:

- коэффициенты кинематической энергии в сечениях А-А и В-В,

- коэффициент сопротивления на участке от А-А до В-В, отнесенной к скорости .

- плотность рабочей жидкости;

- ускорение силы тяжести.

А) б) в)

Рис. 6.1. Течение через диафрагму:

а) – схема течения;

б) – изменение давления (у стенки трубы,

в середине трубы);

в) – изменение средней скорости.

Отношение площади горла струи к площади отверстия диафрагмыпредставляет собой коэффициент сжатия струи.

Введем отношение площади отверстия диафрагмы к площади сечения трубы
- относительную площадь сужающего устройства (модуль диафрагмы),

.

Выразив
, получим, используя уравнение Бернулли,

В этой формуле с помощью коэффициента учитывается, что точки отбора давленияипосле диафрагмы, как правило, не совпадает с сечениями А-А и В-В.

Н
аиболее распространенными способами отбора давлений является угловой и фланцевый (см. рис. 6.2 и 6.3).

Рис. 6.2. Стандартная диафрагма:

а – с точечным угловым отбором и;

б – с камерным угловым отбором и

(1мм <С <12 мм)

Рис. 6.3. Диафрагма с фланцевым отбором давления:

а – во фланцах; б – в объеме;

, где
мм

Если отбор давления производится в сечении А-А и В-В, то коэффициент
.

Выражая расход жидкости через получим

, причем

.

Из изложенного ясно, что коэффициент расхода для диафрагм зависит от. Для удобства анализа влияния этих факторов на коэффициент расходапредставим его в виде произведения ряда сомножителей, каждый из которых характеризует влияние одной из перечисленных величин:

,

где для диафрагмы:

определяет долю участия начальной кинетической энергии в образовании кинетической энергии струи, выходящей из сужающего устройства (в горле струи);

;

коэффициент потерь;

коэффициент распределения скоростей. От коэффициента потерь он практически не зависит, т.к. при
ошибка не превосходит
%. Еслии
равны 1, то

Для удобства расчета сужающих устройств вводится коэффициент истечения

.

Коэффициент С характеризует процессы, происходящие непосредственно в сужающем устройстве.

Кроме названных факторов на величину коэффициента расхода влияет шероховатость трубопровода, притупление входной кромки и т.д.

Не останавливаясь подробно на изучении поведения каждого из коэффициентов (более подробно с этим можно ознакомиться в ), перейдем к определению расхода, используя рекомендации по определению коэффициентов истечения, полученные в результате обработки множества опытных данных.